Detecting change in urban areas at continental scales with MODIS data

C.M. Mertesa,b,⁎, A. Schneidera,b, D. Sulla-Menashec, A.J. Tatemd,e, B. Tanf

a Center for Sustainability and the Global Environment, Nelson Institute for Environmental Studies, Madison, WI, USA
b Department of Geography, University of Wisconsin–Madison, Madison, WI 53726, USA
c Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
d Department of Geography and Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK
e Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
f NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

ARTICLE INFO

Article history:
Received 24 May 2014
Received in revised form 29 August 2014
Accepted 8 September 2014
Available online 4 December 2014

Keywords:
Urban areas
Urbanization
Cities
Land cover
Change detection
Classification
Machine learning
Decision trees
Data fusion
Decision fusion

ABSTRACT

Urbanization is one of the most important components of global environmental change, yet most of what we know about urban areas is at the local scale. Remote sensing of urban expansion across large areas provides information on the spatial and temporal patterns of growth that are essential for understanding differences in socioeconomic and political factors that spur different forms of development, as well as the social, environmental, and climatic impacts that result. However, mapping urban expansion globally is challenging: urban areas have a small footprint compared to other land cover types, their features are small, they are heterogeneous in both material composition and configuration, and the form and rates of new development are often highly variable across locations. Here we demonstrate a methodology for monitoring urban land expansion at continental to global scales using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The new method focuses on resolving the spectral and temporal ambiguities between urban/non-urban land and stable/changed areas by: (1) spatially constraining the study extent to known locations of urban land; (2) integrating multi-temporal data from multiple satellite data sources to classify c. 2010 urban extent; and (3) mapping newly built areas (2000–2010) within the 2010 urban land extent using a multi-temporal composite change detection approach based on MODIS 250 m annual maximum enhanced vegetation index (EVI). We test the method in 15 countries in East–Southeast Asia experiencing different rates and manifestations of urban expansion. A two-tiered accuracy assessment shows that the approach characterizes urban change across a variety of socioeconomic/political and ecological/climatic conditions with good accuracy (70–91% overall accuracy by country, 69–85% by biome). The 250 m EVI data not only improve the classification results, but are capable of distinguishing between change and no-change areas in urban areas. Over 80% of the error in the change detection can be related to definitional issues or error propagation, rather than algorithm error. As such, these methods hold great potential for routine monitoring of urban change, as well as for providing a consistent and up-to-date dataset on urban extent and expansion for a rapidly evolving region.

© 2014 Published by Elsevier Inc.

1. Introduction

The demographic transformation toward an urban world has pushed urbanization—population growth as well as the expansion of built-up areas—to the forefront of environmental and development agendas. The consequences of urbanization are largely contingent on the size, location, and configuration of development (Weng, 2001; Zhou et al., 2004), with many environmental impacts exacerbated when new growth is expansive and/or fragmented in form (Alberti, 2005). A meta-analysis of urban expansion indicates that local- to regional-scale studies are geographically biased, leaving even many large cities unstudied (Seto, Fragkias, Güneralp, & Reilly, 2011). Detailed maps on regional- to global-scale changes in urban land do not exist. Previous efforts have been sample-based (Angel et al., 2005; Schneider & Woodcock, 2008; Taubenböck, Esch, Felbier, Wiesner, & Roth, 2012), have focused on one country (Homer, Huang, Yang, Wylie, & Coan, 2004; Wang et al., 2012), or have drawn conclusions from datasets with substantial temporal and spatial mismatch or variability in how cities are defined (Seto, Sanchez-Rodriguez, & Fragkias, 2010). Routine monitoring of urban expansion across large areas could therefore provide the spatial information on patterns of urban growth that are essential for understanding differences in socioeconomic and political factors that spur different forms of development, as well as the social and environmental impacts that result (World Bank, 2014).

Several global maps of c. 2000 urban areas have been produced in the past decade (Bhaduri, Bright, Coleman, & Dobson, 2002; CIESIN, ...
Fig. 1. Maps of the East Asia region illustrating (a) the study area extent defined by known locations of urban land, and (b) Olson’s biome designation, used to delineate areas of similar ecoclimatic characteristics for data processing.
2004; Elvidge et al., 2007; Schneider, Friedl, McIver, & Woodcock, 2003) which have demonstrated the value of large-area maps of urban extent/ expansion for assessment of arable land (Avellan, Meier, & Mauser, 2012; Tan, Li, Xie, & Lu, 2005), water quality/availability (McDonald et al., 2011), natural resources (Lambin & Meyfroidt, 2011), habitat loss (Radeloff et al., 2005) and biodiversity (Guneralt & Seto, 2013); air pollution monitoring and associated impacts to human health (Grimm et al., 2008); and regional-global modeling of climate (Oleson, Bonan, Feddema, Vertenstein, & Grimmond, 2008), hydrological (McGrane, Tetzlaff, & Soulsby, 2014), and biogeochemical cycles (Nordbo, Jarvi, Haapanala, Wood, & Vesala, 2012; Zhao, Zhu, Zhou, Huang, & Werner, 2013). These maps have also been vital for investigating socioeconomic issues, including population distribution (Jones & O’Neill, 2013), spatial patterns of disease risk (Tatem, Noor, von Hagen, Di Gregorio, & Hay, 2007; Wilhelmi, de Sherbinin, & Hayden, 2013), poverty (Elvidge et al., 2009), and economic growth (Chen & Nordhaus, 2011), and for planning and policy in developing-country cities that lack this information (Scott et al., 2013).

While remote sensing of land cover change for large areas has become common in many types of landscapes (Hansen et al., 2013; Zhang et al., 2003), mapping urban expansion globally has remained relatively difficult: urban areas are rare, their features are small, they are heterogeneous in both material composition and configuration, and the form, rates, and spectral-temporal signatures of urban expansion are highly variable across locations (Jensen & Cowen, 1999; Kontgis et al., 2014; Maktav, Erbek, & Jürgens, 2005; Potere, Schneider, Schlomo, & Civco, 2009). In addition, cost and data availability generally necessitate the use of coarse (250–1000 m) or moderate (20–30 m) resolution data for continental scale mapping, thereby compounding the issue of land cover ‘mixing’ due to the large ground resolution cell.

The primary objective of this work was to develop a methodology to monitor urban land expansion at continental to global scales. Building on our past work using Moderate Resolution Imaging Spectroradiometer (MODIS) data to map global urban extent (Schneider, Friedl, & Potere, 2010, Schneider et al., 2003), we developed a methodology to resolve the spectral and temporal ambiguities between urban/non-urban land and stable/changed areas by: (1) spatially constraining the study extent using known locations of urban land; (2) integrating multisource satellite data to classify c. 2010 urban extent; and (3) employing multitemporal composites of MODIS 250 m maximum enhanced vegetation index (EVI) observations in a change detection approach to map newly built areas (2000–2010) within the 2010 urban land extent. This method is built on one critical assumption: any conversion of land to urban uses is unidirectional and absolute, and thus, any urban expansion 2000–2010 (regardless of location near/far from the city) will be urban land in 2010.

We test and implement this methodology for 15 countries in East and Southeast Asia (Fig. 1, hereafter East Asia). In doing so, we set a second objective to generate a new dataset depicting recent urban land expansion across the region (Schneider et al., in press). The rapid economic growth and high rates of urbanization characterizing many areas in the region have resulted in a high demand for timely land information for researchers, land use managers, governing institutions and the private sector. East Asia also provides a sound test case for method validation, as the predominance of cloud cover and complex urban landscapes in the region require methods that are robust to missing/noisy data. In the following sections, we outline the background, describe the methods and results, and finally, conclude with a discussion of lessons learned from this research.

2. Background

To map urban expansion across large areas, we draw on three areas in the remote sensing literature: (a) global monitoring of urban land, (b) change detection methods for urban areas, and (c) change detection over large areas.

2.1. Global mapping of urban areas

Eight different teams have developed global maps that depict the spatial extent of urbanization c. 2000 (Gamba & Herold, 2009), while others have developed proof of concept studies (Taubenböck et al., 2012; Zhang & Seto, 2011). Unfortunately, existing global maps exhibit a great deal of variability in how urban areas are characterized, evident from the areal estimates of urban land that range from 300,000 to 3 mil km² (Schneider et al., 2010). The definitional problems are twofold. First, any number of operational definitions of ‘urban’ are employed, ranging from functional definitions related to human land use (Balk et al., 2004; Zhang & Seto, 2011), administrative boundaries (Deichmann, Balk, & Yetman, 2001), or population size and density (Bhaduri, Bright, Coleman, & Dobson, 2002), to physical definitions based on land cover (Elvidge et al., 2007; Schneider et al., 2003) or

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Datasets used to define the study extent in East Asia for satellite image processing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset</td>
<td>Producer</td>
</tr>
<tr>
<td>MODIS 500 m map of global urban extent</td>
<td>University of Wisconsin–Madison</td>
</tr>
<tr>
<td>Google Earth populated places</td>
<td>Google Earth Pro v7.1. Layers: populated places</td>
</tr>
</tbody>
</table>

Abbreviations: Moderate Resolution Imaging Spectroradiometer (MODIS), Global Rural-Urban Mapping Project (GRUMP).
anthropogenic light emissions (NGDC, 2007). The second is whether the adopted definition is congruent with how the maps are produced, such that the input datasets (e.g., remote sensing, nighttime lights, census data), classification method, and thematic classes align with how urban areas are defined.

Few of the global urban mapping efforts – including new work by the European Space Agency and Google Earth Engine to map c. 2010 urban land – depict changes in urban land over time, however. The exception is the GeoCover Land Cover product for 1990–2000 (MDA Federal, 2004), although these data have limited geographic coverage.

Table 2
Remote sensing and training datasets used to map c. 2010 urban extent and 2000–2010 urban expansion. Abbreviations: Moderate Resolution Imaging Spectroradiometer (MODIS), Bidirectional reflectance distribution function (BRDF), System for Terrestrial Ecosystem Parameterization (STEP), Enhanced Vegetation Index (EVI).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Description</th>
<th>Source</th>
<th>Location</th>
<th>Time period</th>
<th>Spatial unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification c. 2010</td>
<td>MCD43A4, MCD43A2 MODIS nadir BRDF-adjusted reflectance (NBAR) and quality product 8-day composites</td>
<td>MODIS Land Team, Boston University</td>
<td>Global</td>
<td>Monthly composites, 2009–2011</td>
<td>500 m pixel</td>
</tr>
<tr>
<td>STEP land cover database</td>
<td>Training exemplar database used with NBAR data</td>
<td>Boston University, University of Wisconsin–Madison</td>
<td>Global</td>
<td>c. 2010</td>
<td>500 m–2 km polygon</td>
</tr>
<tr>
<td>MOD09Q1G EVI</td>
<td>MODIS Enhanced Vegetation Index (EVI) 8-day composites</td>
<td>NASA Goddard Space Flight Center</td>
<td>East Asia</td>
<td>Annual growing season maximum, 2009–2010</td>
<td>250 m pixel</td>
</tr>
<tr>
<td>Urban, non-urban training data MOD44W</td>
<td>MODIS land-water mask</td>
<td>United States Geological Survey</td>
<td>East Asia</td>
<td>c. 2010</td>
<td>250 m pixel</td>
</tr>
<tr>
<td>Urban and urban expansion training data</td>
<td>MODIS Enhanced Vegetation Index (EVI) 8-day composites</td>
<td>University of Wisconsin–Madison</td>
<td>East Asia</td>
<td>Annual growing season maximum, 2000–2010</td>
<td>250 m pixel</td>
</tr>
<tr>
<td>Change detection 2000–2010</td>
<td>MOD09Q1G EVI</td>
<td>NASA Goddard Space Flight Center</td>
<td>East Asia</td>
<td>Annual growing season maximum, 2000–2010</td>
<td>250 m pixel</td>
</tr>
<tr>
<td>MODIS land-water mask</td>
<td>Training set database used with EVI data</td>
<td>University of Wisconsin–Madison</td>
<td>East Asia</td>
<td>2000–2010</td>
<td>250 m pixel</td>
</tr>
</tbody>
</table>

Fig. 2. The distribution of missing data observations in the MODIS 500 m NBAR data for (a) the East Asia study region, and for (b) northeastern China, (c) southeastern China, and (d) central Indonesia. Note the small number of cloud-free observations in cities and tropical/subtropical areas. Panel (e) illustrates the cloud-free time of year for each tile.

Optimal cloud-free time of year
- January 1 - April 30
- March 22 - August 28
- May 1 - October 15
- August 5 - November 8
- October 8 - December 18

MODIS tile grid (sinusoidal projection)
remain prohibitively expensive, and are becoming outdated for areas witnessing rapid changes since 2000 (Potere et al., 2009). Recent efforts with nighttime lights to monitor urbanization have shown promise, but are limited for mapping urban land expansion explicitly as these data have been found to be a function of demographic, socioeconomic, and land surface variables (Ma, Zhou, Pei, Haynie, & Fan, 2012; Zhang & Seto, 2011).

2.2. Urban change detection

Early approaches to measure urban expansion with remote sensing focused on simple band ratios, image thresholding, and image differencing to discern broad-scale changes at the urban–rural fringe (Howarth & Boasson, 1983; Jensen & Toll, 1982; Martin & Howarth, 1989), while more recent developments accommodate the high spectral variability of urban areas by exploiting spatial or polarimetric dimensions in satellite datasets (Bhaskaran, Paramananda, & Ramnarayan, 2010; Ghimire, Rogan, & Miller, 2010; Shaban & Dikshit, 2001; Taubenböck et al., 2012). Recent studies have also explored data fusion to combine multi-resolution optical data (Deng, Wang, Li, & Deng, 2009), or radar and optical data either during preprocessing (i.e. fusing raw data, Amarsaikhan et al., 2010) or classification (e.g. combining inputs within one algorithm, Corbane, Faure, Baghdadi, Villeneuve, & Petit, 2008; Griffiths, Hostert, Gruebner, & Van der Linden, 2010). As these data fusion techniques use high/very high resolution (VHR) optical data or radar imagery, they have only been applied at the scale of individual cities or neighborhoods (Bhaskaran et al., 2010; Pacifici, Chini, & Emery, 2009; Pesaresi, 2000) where obtaining full coverage is feasible.

2.3. Change detection over large areas

New access to Landsat data has generated a boom in their use for large-area applications (Wulder, Masek, & Cohen, 2012), yet several barriers to their widespread adoption have yet to be resolved. Data availability is still hampered by cloud cover (35% on average, Ju & Roy, 2008), gaps from the scan line corrector failure of Landsat 7 (22% per scene on average, Storey, Scaramuzza, & Schmidt, 2005), and data discontinuities in the archives. While some data issues have been resolved by the unprecedented availability of the Landsat archives, processing these scenes for large areas remains time- and labor-intensive due to the small scene footprint (e.g., East Asia is covered by more than 1500 Landsat footprints). The advantages of coarse resolution data for these applications are therefore clear: comprehensive areal coverage, large image footprints, routine monitoring, archival depth, and perhaps most importantly, frequent data acquisition (global coverage every 1–2 days). Moreover, many methods developed for coarse resolution data will become increasingly viable for Landsat as technical solutions to address data quality and availability continue to be advanced.

3. Definitions

An important first step in the methodology is establishing a clear conceptual framework for defining the urban environment. Representations of urban areas derived from satellite data are most congruent with definitions based on the surface properties that they measure (Potere & Schneider, 2007). Therefore, we define urban areas as locations dominated by constructed surfaces, where dominated implies > 50% coverage of a pixel. Spaces that perform an urban function but are not made up of

![Fig. 3. Global (a) and local views (b–d) of the three training datasets compiled for this research. To classify c. 2010 urban land using the MODIS 500 m data, we rely on a global distribution of >2000 training sites (Friedl et al., 2010) (a, b). This database was updated and augmented with an additional 400+ training sites drawn from a stratified random sample of 250 locations in East and Southeast Asia. To create the a priori urban probability surface using MODIS 250 m data, we collected training data on a tile-by-tile basis for urban and non-urban areas (c). We then adapted (c) to represent stable urban land and urban expansion, 2000–2010 (d), for use in the change detection approach.](image)
constructed surfaces (e.g. parks, golf courses, green spaces) are not considered urban land. We also define a minimum mapping unit (MMU) of 0.56 km² (3 × 3 250 m pixels) as the smallest contiguous area of built-up land reliably represented using 250–500 m MODIS inputs. Conversely, areas within urban areas that do not have built-up surfaces are characterized as non-urban land if they exceed the MMU.

The approach to monitor urban change is based on the premise that any conversion of land to urban cover during the period 2000–2010 will appear as urban land in 2010. The assumption that urban development is irreversible is commonly adopted for land change studies (Carrion-Flores & Irwin, 2004; Schneider, 2012; Seto et al., 2011; Taubenböck et al., 2012) and in practice holds true especially at the temporal scale of interest (e.g. decade). Housing demolition does occur within the study region, but the result is land modification or redevelopment rather than land conversion. In this research, only conversion of non-urban to urban land is considered ‘urban expansion,’ and all areas converted to built-up surfaces are labeled urban expansion regardless of location within the urban fabric, at the urban fringe, or in peri-urban or rural areas.

Fig. 4. The data fusion approach used to map c 2010 urban extent for Bangkok, Thailand, illustrating (a) the urban class probability from the MODIS 500 m supervised decision tree classification; (b) the a priori surface for urban land developed from the MODIS 250 m enhanced vegetation index data; and (c) the final map of urban extent from the fusion of the (a) and (b) using Bayes’ Rule.

Fig. 5. Maximum enhanced vegetation index (EVI) values for the 2009 and 2010 growing seasons for urban and non-urban exemplars in temperate, arid/semi-arid, and tropical biomes, highlighting the ability of EVI data to discriminate between the two classes. A linear boundary can nearly be fit to the data in temperate zones, and clustering is visible in arid and tropical zones as well, indicating that EVI is informative in these regions as well.
Table 3
A comparison of results from the logistic regression models used to estimate an urban/non-urban probability surface with MODIS 250 m enhanced vegetation index (EVI) data. Models were tested with (a) different explanatory variables, and (b) different methods of training data collection.

<table>
<thead>
<tr>
<th>Sample size (n)</th>
<th>Number of predictors (x)</th>
<th>Number of significant predictors α = 0.05 (x)</th>
<th>Area under ROC curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Predictor variables</td>
<td>1237</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>1 Growing season, all 8-day observations (2010)</td>
<td>1237</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2 Growing season maximum (2009)</td>
<td>1237</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3 Growing season maximum (2010)</td>
<td>1237</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4 Growing season maximum (2009, 2010)</td>
<td>1237</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>b. Method of training data collection (using model 3)</td>
<td>3611</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6 STEP database (Google Earth imagery)</td>
<td>1237</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7 250 m pixels (MODIS imagery)</td>
<td>1237</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviations: Moderate Resolution Imaging Spectroradiometer (MODIS), System for Terrestrial Ecosystem Parameterization (STEP).

4. Data and methods for monitoring urban expansion

4.1. Overview

After defining the study extent, we characterize urban expansion 2000–2010 by: (1) classifying c. 2010 urban land, and (2) locating areas of change within the c. 2010 urban extent.

4.2. Delineating the study area extent

We constrained the East Asia study region to known locations of urban land. To do this, we synthesized all contemporary city point data available (gazetteers, city lists, etc., Table 1) with a c. 2001 map of urban extent developed using an ensemble decision tree classification of the spectral and temporal information in one year of 500 m MODIS observations (Schneider, Friedl, & Potere, 2009). This map has been shown to have the highest locational accuracy of the available maps for the region and a zero omission rate of cities globally (Potere et al., 2009). Circa 2010 point data were then used in all cases possible to ensure all cities > 100,000 persons—including those that grew from small settlements to cities > 100,000 from 2000 to 2010—were included in the study extent. In cases where the city points did not align with the 2001 MODIS map of urban areas, city point locations were manually checked against Google Earth data and adjusted as necessary. Contiguous patches of urban land > 1 km² present in the c. 2001 MODIS map that did not intersect with a city point source were similarly checked in Google Earth, labeled by place name, and included in the dataset if the patch was indeed built-up. Finally, urban patches were categorized into small, medium, and large classes based on their areal extent and population, and then buffered by 5, 25, and 100 km, respectively, to create the final study extent. The study extent represents 30% of the total land area in the region.

Previous work has demonstrated that the controls exerted on land cover and the structure of human settlements by climate, vegetation, and ecosystem characteristics make biome designations useful for stratifying data for continental-scale land cover change (Clark, Aide, & Riner, 2012) and urban applications (Schneider et al., 2009). Using Olson et al.'s (2001) biome classification, the study region was delineated into nine biomes covering temperate, tropical and arid regions (Fig. 1b) used for classification, change detection, and accuracy assessment.

4.3. Remote sensing data

We exploit the spectral and temporal information in two separate sources of MODIS data: (1) MODIS 500 m multispectral data, and (2) MODIS 250 m enhanced vegetation index (EVI) data (Table 2). Specifically, we use MODIS 500 m Nadir BRDF-Adjusted Reflectance (NBAR) surface reflectance data (Schaaf et al., 2002) for the seven “land” bands (visible to mid-infrared) for 37 tiles in Asia. NBAR data are normalized to a nadir-viewing angle to reduce noise resulting from varying illumination and viewing geometries (Schaaf et al., 2002), and are produced on a temporally rolling 8-day interval to reduce cloud impacts (Roy, Lewis, Schaaf, Devadiga, & Boschetti, 2006). We rely on EVI rather than the normalized difference vegetation index (NDVI) due to EVI’s higher sensitivity to medium- to high-biomass vegetation, which allows EVI to provide better vegetation discrimination in the tropical region of the study area.

In the NBAR data, missing observations frequently occur within/near cities since bright urban surfaces are often mistakenly removed during cloud screening (Leinenkugel, Kuenzer, & Dech, 2013) (Fig. 2). Optimal data were therefore selected for each tile (between 11 and 21 contiguous 8-day observations, Fig. 2e) based on the season with the greatest data availability for urban areas (see S1 for more details). The 8-day NBAR observations were then aggregated to 32-day mean value composites to reduce the temporal correlation and the frequency of missing values from cloud cover. Feature selection was undertaken manually by testing different combinations of inputs, metrics, and compositing periods in several pilot trials based on domain knowledge. The final input features included the monthly (32-day) minima, maxima, means, and variances for each band and vegetation indices, as well as annual metrics calculated using only observations from the cloud-free season for each tile.

At 250 m resolution, we rely solely on EVI data, since vegetation removal has been shown to be an important indicator of urban land conversion (Schneider, 2012; Stefanov, Ramsey, & Christensen, 2001). Because unfiltered MODIS 250 m data are noisy and have a large number of missing observations, we temporally smoothed the data using a modified asymmetric Gaussian filter within an augmented version of TIMESAT (Jonsson & Eldholm, 2002), and then fit a curve to the data that approximates the phenological pattern to fill data gaps (Gao et al.,
The result is a high-quality dataset shown to be suitable for both classification and direct assessment of EVI values (Tan et al., 2011). We selected the MODIS EVI data for the growing season in each tile, defined for all tiles as the 23 observations spanning March through September, and then computed the maximum EVI from these values for each year, 2001–2010.

4.4. Classification of 2010 urban extent

To classify 2010 urban extent, we rely on an ensemble method which uses a supervised decision tree as the base algorithm (C4.5, Quinlan, 1993). Decision trees are capable of accommodating high intra-class variability, and thus have been widely utilized for large area mapping of land cover (Friedl et al., 2002; Hansen, Townshend, Defries, & Carroll, 2005) and urban areas (Schneider et al., 2009). Ten trees are estimated using boosting, a technique that improves class discrimination by iteratively training classifiers based on different weightings of the training data. Because a class label is assigned with each iteration of the boosting algorithm, the ensemble of trees provides a probability estimate for each class at every pixel (McVey & Friedl, 2001). Although the least cloudy season was isolated for each tile (Section 4.2), we used three years of MODIS 500 m data (2009–2011) for the selected season to ensure at least one quality observation for each pixel.

The training data for the 500 m MODIS classification included the System for Terrestrial Ecosystem Parameterization (STEP) database, a set of >2000 exemplars collected from Google Earth and Landsat data for 17 classes (Friedl et al., 2002, 2010). This globally comprehensive database was updated and augmented with >400 sites drawn from a stratified random sample of 250 locations within East Asia (Fig. 3a, b). All sites were collected as 0.5–2.0 km² polygons of uniform land cover interpreted using Google Earth imagery.

The results of the MODIS 500 m classification characterized cities well (Fig. 4a), but showed confusion between urban classes and mixed vegetation classes in areas outside cities. To help resolve the spectral ambiguities among these mixed classes, we employed a decision-level data fusion technique using the vegetation information within the 250 m MODIS EVI temporal profiles to refine the classification results (Fig. 4). Methods to monitor vegetation dynamics often employ time-series spectral profiles of vegetation indices (Bradley et al., 2007; Martinez & Gilabert, 2009; Zhang et al., 2003), as the frequent data points provide better discrimination of signal from noise and make it possible to link vegetation phenology to spectral trajectories (Kennedy, Cohen, & Schroeder, 2007). When the retrieval of phenological markers is not relevant, temporal compositing can significantly reduce data volumes and negatively-biased noise from cloud contamination (Fisher, Mustard, & Vadeboncoeur, 2006) while still retaining the temporal characteristics related to land cover (Borak, Lambin, & Strahler, 2000; Clark et al., 2012). Past work has demonstrated that the peak greenness achieved in urban areas is often distinct from nearby land cover types (Schneider et al., 2010). However, this separability varies with climate and biome (Fig. 5). Therefore, we leverage maximum EVI data by biome to calculate probabilities of urban land. Although they are weighted similarly to the probabilities derived from the 500 m MODIS data, we treat these as prior probabilities where the ancillary vegetation information (EVI) provides a local likelihood estimate for membership in both the urban and nonurban classes, thus allowing it to be incorporated into the classification using Bayes’ Rule.

To compute the prior probabilities, we defined a logistic regression model using the growing season maxima for the smoothed, gap-filled MODIS EVI data. The model is defined using a binomial distribution and the expression

\[
P(U_{ik}) = \frac{e^{V_i}}{1 + e^{V_i}}
\]

where \(P(U_{ik})\) is the probability that a pixel is urban, and \(V_i\) is provided by a multiple linear regression model. Several trials were conducted to model the relationship between EVI and urban areas using different predictor variables (Table 3, models 1–5). Based on the predictive power of the model, given by the area under the receiver operating characteristic (ROC) curve, and the hypothesis test of each variable coefficient (Table 3), the results showed that model 3 outperformed the others. Thus, we model \(V_i\) as:

\[
V_i = \beta_0 + \beta_1 \text{EVI2009}_i + \beta_2 \text{EVI2010}_i
\]

where \(\text{EVI2009}_i\) and \(\text{EVI2010}_i\) are the maximum EVI observations for 2009 and 2010 for the \(i\)th pixel, \(\beta_1\) and \(\beta_2\) are their coefficients, and \(\beta_0\) is the intercept. We also found that a model trained with pixels from visual interpretation of the 250 m data outperformed the model trained with the relatively larger 0.5–2 km² STEP exemplars selected in Google Earth (Table 3, models 6–7).

We constructed three separate logistic regression models for temperate, tropical, and arid regions (the biome groupings are shown in Fig. 1b). Training data were collected for urban and non-urban sites...
for each model (Fig. 3c) so greater local representation could be achieved in each region. The regression coefficients were estimated within MATLAB (2011) for each model using an iterative maximum likelihood estimation method for 80% of the training data. The remaining 20% of data were used to assess model performance (Table 4). The Wald test results confirmed that the coefficients for each model were significant at $p < 0.05$ and therefore contributed to the regression (Table S2). The ROC areas were 92, 84, and 76% for temperate, tropical, and arid biomes, respectively, indicating that these models are suitable for predicting the presence of urban areas.

In the last step of the c. 2010 urban classification, we adjusted the prior probabilities from the 250 m MODIS data, $P(U_{LR})$ by the conditional probabilities from the decision trees $P(U_{DT})$. Following Bayes’ Rule, we estimate the posterior probabilities as:

$$P(U) = \frac{P(U_{DT}) \cdot P(U_{IR})}{\sum P(U_{DT}) \cdot P(U_{IR}) + ((1-P(U_{DT}))) \cdot (1-P(U_{IR}))},$$

(3)

The posterior probabilities are compared to Google Earth VHR imagery to select an appropriate threshold for defining the urban class. These thresholds were selected at a natural break in the data for each tile or subset of tile (if the tile covers multiple biomes) based on local characteristics and data quality in each area. In temperate biomes, for example, a test of the training data indicated that urban pixels tend to achieve a much higher probability of class membership in the urban class (on average, 94%) than those in arid or tropical regions (on average 51% and 35%, respectively). This occurs because temperate regions have higher quality satellite data, larger amounts of training data, and greater spectral separability between urban and surrounding land cover types than in arid or tropical regions (Fig. 5).

Finally, post-processing refinements were made to finalize the urban extent map. Spurious pixels were removed using a sieve filter, and water bodies were masked using the MODIS 250 m land–water layer (Carroll, Townshend, DiMiceli, Noojipady, & Sohlberg, 2009). As is necessary with many remote sensing-derived maps, a final editing step was conducted by comparing the maps to c. 2010 VHR data in Google Earth and correcting misclassified pixels (note that approximately 10% of all urban areas required some manual editing).

Capitalizing on the assumption that urban land does not become ‘undeveloped’, the 2010 urban extent map was used to spatially constrain the change detection process. The change detection method used ten years of growing season maximum EVI data (2001–2010) as input to a boosted decision tree algorithm (C4.5) to classify the c. 2010 urban extent as: (1) built-up in 2000; or (2) urbanized during the 2000–2010 period. The localized training data collected for the logistic regressions (Fig. 3c) were revisited, and all urban sites were labeled as extant urban land, or newly developed urban land, 2000–2010 (Fig. 3d).

This approach relies on the observed relationship between EVI and urban areas established previously: any conversion from agriculture, grassland, forest, etc., to developed land is detectable through changes in vegetation (Fig. 6). As urban spectral trajectories and magnitude of change in vegetation signal accompanying urban expansion varies by the region and between different initial land cover types (Fig. 6), it was necessary to construct decision trees and choose breakpoints to threshold the decision tree urban expansion probabilities by subregion (temperate, tropical, arid) in a similar procedure used for the 2010 urban extent map (Fig. 7). Thresholds were chosen using a procedure similar to the one used for the 2010 urban extent map.
4.6. Accuracy assessment

We examine map accuracy using a two-tiered approach. First, we assess the quality of the 2010 urban classification results, followed by an evaluation of the change detection methodology and urban expansion map accuracy. The tier one test sites were generated using Geodesic Discrete Global Grids (DGGs) (Sahr, White, & Kimerling, 2003), a class of equal-area, uniformly distributed hexagonal partitions of the Earth’s surface. To define the sites, we used a DGG with a facet size of 0.132 km² and a stratified random sample design drawn from within the study extent. While the final maps were produced at 250 m, this site-based analysis was designed to provide a sampling unit consistent in size with the training data and the 500 m grid of the coarsest resolution MODIS data. The sites were assessed in Google Earth against VHR data (≤4 m) in a double-blind assessment procedure by a team of photo-interpretation analysts, and labeled as urban/non-urban land (tier one), and urban land/urban expansion 2000–2010 (tier two). In all cases, a site had to be >50% of a given land cover type to be labeled as such. A final review of all sites was conducted for quality control and to assign labels in cases where analysts disagreed.

The second tier assessment was designed to quantify the accuracy and efficacy of the change detection methodology, as well as evaluate...
the accuracy of the urban expansion maps. First, samples were selected in proportion to each country’s share of urban land in the region (note that for countries with <1% of urban land, we used a minimum of 20 sites). Second, we sampled across biomes, selecting sites in proportion to the distribution of urban land across the nine biomes (Olson et al., 2001). Once the sample distribution was established (Table S3), we selected sites at random from within a tightly buffered region of the city points using the 250 m MODIS raster grid to ensure that the sample included urban expansion sites. Following the tier one procedure, each site was assessed in Google Earth and assigned one of three labels: urban land, urban expansion, or non-urban land.

5. Results

5.1. Regional and local views

We present the change detection results in Fig. 8 for a subset of metropolitan areas. Visually, these views are in accordance with ground-based evidence and spatial datasets produced at different time points and/or scales. They also indicate that the methods capture new urban development that is contiguous with the urban core across a range of city sizes, as well as patchy growth in peri-urban areas far from the city edge. While the objective of these mapping efforts was to capture all cities > 100,000 persons, small cities and villages were also mapped in many areas where the size/composition of the settlements made them spectrally and temporally distinct (e.g., outside Beijing, Fig. 8). The lack of available data on urban expansion at comparable scales limits our ability to cross-examine the map trends, but also underscores an important result: up-to-date, consistent, and spatially-explicit information on the extent and growth of cities is now available for the rapidly evolving region of East-Southeast Asia.

5.2. Tier one accuracy assessment

The overall accuracy of the 2010 map of urban extent (tier one) is 84% (kappa = 0.62), and is fairly consistent across countries (ranging from 79 to 93%, Fig. 9) and biomes (83–100%, Fig. 10). The accuracy was not significantly affected by the inclusion of small patches of urban land (Table 4); overall accuracy drops only 1–2% if these areas are included. Producer’s accuracy for the urban class is high for the region (85%), indicating that urban areas are well captured, with few errors of omission (Tables 4, 5). At 64%, the user’s accuracy for the region is reasonable, but suggests that map errors are predominantly the result of commission errors where non-urban areas area mislabeled as urban land. As a result, the total urban land area may be overestimated in some locations, particularly Thailand, Malaysia, and Laos, where user’s accuracies are < 61%.

5.3. Tier two accuracy assessment

The overall accuracy for the urban expansion maps is 75% (kappa = 0.36), slightly lower than the overall c. 2010 accuracy. Similar to the 2010 map, the accuracy measures are representative of urban areas as defined in Section 3.1, with little difference in overall accuracy after small settlements are removed (Table 6). More developed countries (e.g. Japan, Taiwan, South Korea, etc.) generally have higher accuracies (>80%) than other locations likely because of low growth rates in these highly urbanized countries. Overall accuracy rates are higher in temperate and forest biomes than in arid/semi-arid biomes, as are producer’s accuracies (9 to 25% above average for forest/temperate, 11 to 21% below average for arid/semi-arid biomes) (Table 7). This result is related to the spectral and temporal signatures of the EVI data used for change detection, since peak EVI in arid regions may be quite similar before and after change (i.e. land outside the city that is spectrally bright and sparsely vegetated is converted to spectrally bright urban land).

5.4. Sources of uncertainty and error in the maps

As expected, the tier two accuracy measures are slightly lower than those for tier one, a result that is to be expected: the errors of the 2010 urban classification propagate through to the urban expansion maps, thus lowering the overall achievable accuracy from the start. To evaluate the methodology and the structure of possible map errors in a more targeted manner, we assessed the source of uncertainty for each misclassified site in the tier two results (n = 513). Each site was reevaluated in Google Earth to determine the likely source of error, and labeled accordingly (Table 8, Fig. 11).

The distribution of errors clearly shows the sensitivity of the tier two assessment to the classification results: 43% of errors are due to classification errors from the initial map of c. 2010 urban land (issue 1, Table 8). While obtaining a perfect classification of 2010 urban land is unrealistic, we can hypothesize that an error-free map of urban land might improve the change detection results. After removing sites mislabeled as non-urban land from the tier two sample, accuracies
increase 5–15% depending on location, indicating that the change detection method is likely more effective than the overall accuracy results indicate.

Twenty percent of errors appear to be commission error in the urban expansion class, in locations where urban areas are redeveloped or infilled (issue 2, Table 8). As some large cities expand, they consume small villages and built-up areas by clearing old buildings and replacing them with new, spectrally-bright development (Fig. 11d). Likewise, in urbanized areas that are undergoing densification, the spectral response may increase dramatically with new construction. Because our definition of urban land included any built-up areas or settlements, these sites are technically ‘urban’ in 2000, and remain urban land in 2010. The spectral difference is often large, however, and the change detection approach characterizes these areas as urban expansion accordingly.

An additional 19% of the tier two errors are change detection errors where urban land is mislabeled urban expansion or vice versa, without an obvious indication as to the source of spectral or temporal confusion (issue 3, Fig. 11d). Within this class of errors, the confusion between urban land and urban expansion occurs at a similar frequency, suggesting that there is no bias toward either over- or under-estimating change in the method itself. This error is likely related to the change detection algorithm.

Most of the remaining error (14%) can be traced to the density threshold used to define urban land (issue 4, Table 8). In these cases, the area has some built-up areas in 2000, and remains urban land in 2010. A misclassification at the c. 2000 time point leads to a final label of stable urban land when these areas should be labeled urban expansion (Fig. 11b).

Table 5

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Tier one accuracy (urban vs. non-urban land) by biome, including user’s and producer’s accuracies for the urban class.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biome</td>
<td>Tier one accuracy (%)</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
</tr>
<tr>
<td>Temperate conifer</td>
<td>100</td>
</tr>
<tr>
<td>Tropical conifer</td>
<td>100</td>
</tr>
<tr>
<td>Mangrove</td>
<td>90</td>
</tr>
<tr>
<td>Temperate grass</td>
<td>89</td>
</tr>
<tr>
<td>Flooded grassland</td>
<td>89</td>
</tr>
<tr>
<td>Montane grassland</td>
<td>87</td>
</tr>
<tr>
<td>Xeric shrubland</td>
<td>86</td>
</tr>
<tr>
<td>Tropical moist</td>
<td>85</td>
</tr>
<tr>
<td>Tropical dry</td>
<td>85</td>
</tr>
<tr>
<td>Temperate mixed</td>
<td>83</td>
</tr>
<tr>
<td>Region</td>
<td>84</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>Table 6</th>
<th>Tier two accuracy (urban vs. urban expansion) by country, including user’s and producer’s accuracies for the urban expansion class.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Tier two accuracy (%)</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
</tr>
<tr>
<td>Japan</td>
<td>91</td>
</tr>
<tr>
<td>North Korea</td>
<td>90</td>
</tr>
<tr>
<td>Taiwan</td>
<td>86</td>
</tr>
<tr>
<td>Mongolia</td>
<td>85</td>
</tr>
<tr>
<td>South Korea</td>
<td>82</td>
</tr>
<tr>
<td>Laos</td>
<td>80</td>
</tr>
<tr>
<td>Singapore</td>
<td>80</td>
</tr>
<tr>
<td>Indonesia</td>
<td>79</td>
</tr>
<tr>
<td>Malaysia</td>
<td>79</td>
</tr>
<tr>
<td>Philippines</td>
<td>78</td>
</tr>
<tr>
<td>Cambodia</td>
<td>75</td>
</tr>
<tr>
<td>Myanmar</td>
<td>75</td>
</tr>
<tr>
<td>Thailand</td>
<td>74</td>
</tr>
<tr>
<td>China</td>
<td>71</td>
</tr>
<tr>
<td>Vietnam</td>
<td>70</td>
</tr>
<tr>
<td>Region</td>
<td>75</td>
</tr>
</tbody>
</table>

Note: Cells left blank indicate that there were no expansion sites drawn in the sample.

6. Discussion and conclusions

Urban expansion remains one of the trickiest and most difficult of land cover types to capture with remote sensing data: both urban land and change areas are rare, and urban spectral classes are neither distinct nor homogeneous, making them difficult to isolate using automated approaches. Therefore, one of the underlying goals of this research was to show how to reduce urban change detection into a manageable problem by restricting the classification areas to those where they will potentially occur. Our methodology leverages information on the location and nature of urban areas and urban expansion using multiple sources of moderate resolution remotely sensed data and several ancillary data sources. We tested the approach for a large and diverse region where urban expansion is often uncoordinated and patchy, and consequently, where urban maps are most challenging to produce, yet most needed. The results reveal several insights for monitoring urban change that are relevant to future studies:

6.1. Data fusion helps yield high map accuracy in complex urban landscapes

While the amounts and quality of remote sensing data are unprecedented, there is still no one ‘perfect’ data source for the difficult task of mapping urban expansion. We will continue to face limitations in areal coverage and spatial detail, as well as missing data due to cloud cover. Since missing or noisy observations have been shown to significantly impact map accuracy even when advanced data mining algorithms are employed (Rogan et al., 2008; Schneider, 2012), merging data sources and/or products is an important way to overcome these data availability issues.

This work has also shown that combining multiple data sources/products is advantageous given the heterogeneity of urban land and urban growth. Depending on the built-up density, building materials, and amounts/types of vegetative cover, urban areas may resemble other land cover classes more so than they resemble one another (Schneider, 2012; Small, 2006). Our results show that urban areas resemble bare areas in EVI data, while confusion in broadband multispectral data is often between urban areas and other mixed classes. By treating these as complimentary datasets and fusing information derived from both, many errors are offset and higher classification accuracy is achieved.

6.2. Vegetation profiles can reveal urban expansion

Time series data, especially those based on vegetation indices like EVI, have proven fundamental for distinguishing land surface characteristics and monitoring vegetation dynamics in forested or agricultural
landscales (Alcantara et al., 2013; Martinez & Gilabert, 2009; Rahman, Dragoni, Didan, Barreto-Munoz, & Hutabarat, 2013; Zhu, Woodcock, & Olofsson, 2012). The temporal dynamics of EVI are related to variability (e.g. seasonal variation, gradual fluctuation) as well as land cover change (Verbesselt, Hyndman, Newham, & Culvenor, 2010). We capitalize on both of these frequency components to classify urban land and detect change within urban areas. First, urban areas and other land cover types are often separable if information from multiple seasons is used, since built up lands are predominantly non-vegetated year round while nearby fields or open areas will likely have at least one vegetated season per year. Second, the change information from the longer time series is critical to detect land conversion once urban areas are delineated. Because urban expansion is unidirectional, the use of images from multiple years actually helps confirm whether an area has been developed or whether the drop in the vegetation signal is related to other yearly variability (e.g. crop rotations).

The efficacy and efficiency of EVI temporal information for change detection also highlights the continued utility of MODIS data for urban mapping. Although some urban applications may require greater spatial detail than MODIS provides, the temporal frequency of MODIS is unparalleled, allowing a large number of seasonal and yearly observations that help overcome class confusion due to spectral similarity as well as missing data due to clouds. Indeed, our work provides evidence that it may be possible to pinpoint the timing of change (see Fig. 6). Procedures similar to those used in forest change studies could be adapted for urban environments: given sufficient observations for each year of the study period, a curve-fitting algorithm may be used to isolate a sustained drop in EVI over a moving window of observations

The problem in our study area, however, is that more than half of the region is missing yearly information. While the multitemporal composite method is highly suited to detect urban change, this analysis also reveals biases that should be considered. First, this method relies on vegetation as an indicator of change, so the technique is limited in some arid regions. Although cities in arid and semi-arid locations are often surrounded by irrigated agriculture, allowing for changes in EVI to be observed, there are locations where bare ground outside the city is converted to built-up land. These changes are difficult to detect using EVI, unless the conversion is accompanied by a sufficient vegetation increase (e.g. street trees, garden plots). For similar reasons, there is an inherent bias toward new, spectrally-bright development; our approach is limited in areas where natural roofing or building materials (e.g. thatched houses) have EVI signals similar to nearby vegetation. In developing our methodology, we were able to overcome both of these biases by tailoring our approach to the biome or location at hand. This allows greater freedom with the method, but also leads to increased user input and greater subjectivity, which may in turn, restrict the utility of the method for some users. However, the range of metrics that can be estimated from time series imagery is vast, and many features have not yet been explored for urban areas (e.g. differences in foliage water content that might be captured by the normalized difference infrared index (NDII), Gao, 1996).

6.3. Ancillary information can help simplify the problem

Urban areas account for just 1–2% of total global land area, and urban expansion within/near these areas occurs infrequently. While the exact patterns and extents of urban areas are not well-known globally, their

<table>
<thead>
<tr>
<th>Issue</th>
<th>Occurrence (%)</th>
<th>Description, examples</th>
<th>Ground truth label 2000 ≠ 2010a</th>
<th>Map label 2000 ≠ 2010a</th>
<th>No. test sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Classification error 43</td>
<td>Urban commission error where non-urban land is labeled urban land in 2010. Confusion between land without built surfaces (e.g. confusion between urban areas and extraction activities, riparian areas, bare soil, agriculture, etc.) (a) or with low density (<50%) surfaces may occur (b).</td>
<td>Non-urban ≠ Non-urban Urban ≠ urban</td>
<td>Urban + Urban Non-urban ≠ urban</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>2 Redevelopment and/ or increasing built-up density 20</td>
<td>New development occurs in existing urban area, e.g. settlement is cleared and rebuilt (a), or there is an increase in spectral brightness. No change in label occurs.</td>
<td>Urban ≠ Urban Non-urban ≠ urban</td>
<td>Urban + Urban Non-urban ≠ urban</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>3 Change detection error 19</td>
<td>Urban land and urban expansion are confused by classifier.</td>
<td>Urban + Urban Non-urban ≠ Urban</td>
<td>Urban + Urban Non-urban ≠ urban</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4 Low density urban 14</td>
<td>Area has some built-up areas c. 2000, but does not meet the >50% threshold to be considered urban. Because the area increases to >50% built-up density by 2010, it results in change omission.</td>
<td>Urban + Urban Non-urban ≠ Urban</td>
<td>Urban + Urban Non-urban ≠ urban</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>5 Other 5</td>
<td>Other factor was cited, such as uncertainty in photo-interpretation or limited reference imagery.</td>
<td>Urban ≠ Urban Non-urban ≠ Urban</td>
<td>Urban + Urban Non-urban ≠ urban</td>
<td>71</td>
<td></td>
</tr>
</tbody>
</table>

The labels in the table correspond to the class structure as follows: non-urban land includes all non-urban → non-urban areas; stable urban land includes all urban → urban areas; and urban expansion 2000–2010 includes non-urban → urban areas.
Fig. 11. A sample of the types of issues associated with mislabeled sites in the tier two accuracy assessment of urban land and urban expansion (see x1 for a full description and the frequency of occurrence). The locations of the sites from top to bottom are: Dashiqiao, China; Ibaraki, Japan; Langfang, China; Fuzhou, China; Luoyang, China; Yining City, China.
central locations are captured in a variety of public/private databases, including point datasets, city lists, and even online mapping engines. We have shown that the use of very liberal buffers (up to 100 km) applied to a synthesis of these ancillary datasets (Table 1) eliminated 70% of the land extent from the image processing stream. Basing the change-detection methodology on the same premise of constraining the area for classification, we were able to work 'backwards' from 2010 to map expansion for the 2000–2010 period. In addition, free, highly-detailed Google Earth imagery was harnessed at nearly every step, from training collection to validation. Our approach allowed these data to be exploited without using them explicitly during image processing, thereby limiting the propagation of errors into the final results and extending the capabilities of free data.

6.4. Steps toward routine monitoring

The demand for maps that depict rates, patterns, and amounts of urban land expansion at regional and continental scales is high and growing, and as a result, smart, efficient ways to characterize change using new and existing data sources will be necessary. Our results suggest that classification of urban land remains a labor-intensive, location-based exercise, but methods to detect urban change are moving closer to routine monitoring if vegetation trajectories and multiple data sources are exploited. Moreover, the method to map urban expansion shown here is particularly relevant given the new c. 2010 global urban maps (none of which depict change) that will become available in 2014–2015 (see proof-of-concept papers from Esch et al., 2013; Gamba & Listini, 2013; Poesaresi et al., 2013). These spatially-detailed, highly accurate c. 2010 urban extent maps will help improve the methodology by providing a better, more accurate way to constrain the study extent. The majority of the error in our change detection results was attributable to errors in the c. 2010 map we developed, so improvements in this map means higher change detection accuracy can be achieved.

Finally, the emerging digital landscape is providing vast new data sources on urban processes that could be incorporated into mapping methodologies. Data from location-based social networks (e.g. Four-square) or geo-located internet/social media posts (e.g. Twitter, Facebook, Flickr) are increasingly being exploited to monitor and map disease outbreaks (Signorini, Segre, & Polgreen, 2011) and natural disasters (Gao, Barbier, & Coolsby, 2011; Yates & Paquette, 2011). While the quality and reliability of crowd-sourced and volunteered geographic information must be considered, these datasets provide opportunities for innovation in using humans as sensors.

In sum, global mapping efforts are important because consistent methodologies and definitions facilitate broad scale and comparative analysis, but a ‘one size fits all’ approach will not provide the best results everywhere. In covering large and diverse regions, specific datasets will be more informative in some regions and less so in others. Likewise, different subsets of data are regionally appropriate. For this work, we process data by subregions according to their cloud cover seasonality and ecoclimatic characteristics. By accommodating regional differences but maintaining consistent definitions, data sources, and methods, this work has provided an up-to-date dataset suitable for both broad-scale and comparative analysis, as well as a framework that can be extended to map urban expansion globally.

Acknowledgments

The authors wish to thank Phil Townsend, Mutlu Ozdogan, Caitlin Kontgis, and two anonymous reviewers for comments on an earlier draft of this manuscript. The authors are grateful to Sarah Graves, Jo Horton, James Rollo, and Ian Schelly for technical support, assistance in data collection, and cartographic expertise. This work was funded in part by support from the World Bank. The funders had no role in study design, data collection and analysis, decision to publish, or prepa-ration of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.rse.2014.09.023.

References

345

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.rse.2014.09.023.

